Product Information	Ultramid [®]		
	A3WG5	BASF	
11/2017	PA66-GF25	We create chemistry	
Product description			

Glass fibre reinforced and heat aging resistance injection moulding grade for machinery components and housings of high stiffness and dimensional stability such as coil formers and bearing cages. A3EG5 and A3HG5 are the preferred grades for producing electrically insulating parts.

Physical form and storage

The product is supplied dry and ready to use in moisture-proof packaging. The material is in the form of cylindrical or flat pellets. Its bulk density is about 0,7 g/cm³. Standard packs are the special 25 kg bag and the 1000 kg bulk container (octagonal IBC=intermediate bulk container made from corrugated board with a liner bag). Subject to agreement other forms of packaging and shipment in tankers by road or rail are also possible. All containers are tightly sealed and should be opened only immediately prior to processing. To ensure that the perfectly dry material delivered cannot absorb moisture from the air the containers must be stored in dry rooms and always carefully sealed again after some of the material has been withdrawn. Ultramid® can be stored for a longer period of time in dry, well vented rooms without any change to properties. After longer storage times (> 3 months for IBC or > 2 years for bags) or if material from previously opened containers is used, drying is recommended to remove absorbed moisture. Containers stored in cold rooms should be allowed to equalise to normal temperature so that no condensation forms on the pellets.

Product safety

In case processing is done under conditions as recommended (cf. processing data sheet) melts are thermally stable and do not generate hazards by molecular degradation or the evolution of gases and vapors. Like all thermoplastic polymers the product decomposes on exposure to excessive thermal load, e.g. when it is overheated or as a result of cleaning by burning off. Further information is available from the safety data sheet.

Note

The data contained in this publication are based on our current knowledge and experience. In view of the many factors that may affect processing and application of our product, these data do not relieve processors from carrying out their own investigations and tests; neither do these data imply any guarantee of certain properties, nor the suitability of the product for a specific purpose. Any descriptions, drawings, photographs, data, proportions, weights etc. given herein may change without prior information and do not constitute the agreed contractual quality of the product. It is the responsibility of the recipient of our products to ensure that any proprietary rights and existing laws and legislation are observed. In order to check the availability of products please contact us or our sales agency.

Ultramid[®] A3WG5

Product Information

	BASF
We	create chemistry

Properties			
Polymer abbreviation	-	-	PA66-GF25
Density	ISO 1183	kg/m³	1320
/iscosity number (0.5% in 96 % H2SO4)	ISO 307, 1157, 1628	cm³/g	145
loisture absorption, equilibrium 23°C/50% r.h.	similar to ISO 62	%	1.70 - 2.10
Vater absorption, saturation in water at 23°C	similar to ISO 62	%	5.7 - 6.3
Processing			
Allting temperature, DSC	ISO 11357-1/-3	°C	260
/VR 275 °C/5 kg	ISO 1133	cm ³ /10min	40
All temperature, injection moulding/extrusion		°C	280 - 300
Nould temperature, injection moulding	_	°Č	80 - 90
Noulding shrinkage, constrained ³⁾	_	%	0.48
Aolding shrinkage (parallel)	ISO 294-4	%	0.43
Aolding shrinkage (paralle)	ISO 294-4	%	1.01
	130 294-4	70	1.01
Flammability			
JL 94 rating at 1,6 mm thickness	IEC 60695-11-10	class	HB
Automotive materials (Thickness >= 1mm) 4)	FMVSS 302	-	+
Mechanical properties			dry / cond
ensile modulus	ISO 527-1/-2	MPa	8600 / 6500
Stress at break	ISO 527-1/-2	MPa	180 / 120
Strain at break	ISO 527-1/-2	%	3/6
ēnsile creep modulus, 1000 h, strain <= 0.5%, 23°C	ISO 899-1	MPa	* / 4400
Flexural modulus	ISO 178	MPa	7600 / 600
Texural strength	ISO 178	MPa	260 / 200
Charpy unnotched impact strength (23°C)	ISO 179/1eU	kJ/m ²	65 / 90
Charpy unnotched impact strength (-30°C)	ISO 179/1eU	kJ/m ²	55 / -
Charpy notched impact strength (23°C)	ISO 179/1eA	kJ/m ²	12 / 18
Charpy notched impact strength (-30°C)	ISO 179/1eA	kJ/m ²	9/-
zod notched impact strength (23°C)	ISO 180/A	kJ/m ²	9.5 / 15
	130 180/A	NJ/III-	5.5715
Thermal properties IDT A (1.80 MPa)	ISO 75-1/-2	°C	245
IDT B (0.45 MPa)	ISO 75-1/-2	°C	245 250
	150 / 5-1/-2	°C	
Max. service temperature (short cycle operation) $^{5)}$			240
emperature index at 50% loss of tensile strength after 5000 h	IEC 60216	°C	175
emperature index at 50% loss of tensile strength after 20000 h	IEC 60216	°C	145
Coefficient of linear thermal expansion, longitudinal (23-80)°C	ISO 11359-1/-2	E-6/K	25 - 35
Coefficient of linear thermal expansion, transverse (23-80)°C	ISO 11359-1/-2	E-6/K	60 - 70
hermal conductivity	DIN 52612-1	W/(m K)	0.34
Specific heat capacity	-	J/(kg*K)	1600
Electrical properties			dry / cond
Relative permittivity (1 MHz)	IEC 60250	-	3.5 / 5.5
Dissipation factor (1 MHz)	IEC 60250	E-4	140 / 3000
olume resistivity	IEC 60093	Ohm*m	1E13/1E1
Surface resistivity	IEC 60093	Ohm	*/1E10
Comparative tracking index, CTI, test liquid A	IEC 60112		450

Footnotes

5) Empirical values determined on articles repeatedly subjected to the temperature concerned for several hours at a time over a period of several years. Provisio Proper design and processing according to our recommendations.

67056 Ludwigshafen, Germany

¹⁾ If product name or properties don't state otherwise.
2) The asterisk symbol '*' signifies inapplicable properties.
3) Test box with central gating, dimensions of base (107*47*1,5) mm, processing conditions: TM = 290°C, TW = 80°C